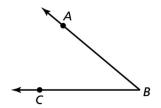

Chapter 1

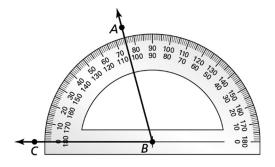
Quiz

For use after Section 1.3

1. Give another name for \overline{FE} .

2. Copy the segment and construct a segment bisector by paper folding. Then label the midpoint *M*.


- **3.** The endpoints of \overline{AB} are A(9,-1) and B(-6,-7). Find the coordinates of the midpoint M.
- **4.** Find the distance between A(0,9) and B(4,17).
- **5.** Does the graph of $2 \le x$ on a number line represent a *segment*, *ray*, *point*, or *line*?
- **6.** In the diagram, $\overline{AB} \cong \overline{BC}$, $\overline{AC} \cong \overline{CD}$, and AD = 10. Find the lengths of all the segments in the diagram. What is the probability that a randomly chosen segment has a length of 2.5?


Chapter 1

QuizFor use after Section 1.6

- **1.** Find the perimeter of $\triangle ABC$ with vertices A(-4, 4), B(4, -1), and C(-4, -1).
- **2.** Find the area of $\triangle ABC$ with vertices A(3,-6), B(5,-6), and C(7,-9).
- 3. Copy the angle and construct the angle bisector with a compass and a straightedge.

4. Find $m\angle ABC$. Then classify the angle.

5. Two vertices of $\triangle ABC$ are A(1,0) and B(5,3). Find the coordinates of C on the positive x-axis such that the value of the perimeter of the triangle is twice the value of the area of the triangle.